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ABSTRACT [Matsushima and Shimobaba 2009; e e

Computer-Generated Holography (CGH) is a set of algorithmic
methods for identifying holograms that reconstruct Three-Dimen-
sional scenes in holographic displays. CGH algorithms decompose
3D scenes into multiplanes at different depth levels and rely on sim-
ulations of light that propagated from a source plane to a targeted
plane. Thus, for n planes, CGH typically optimizes holograms using
n plane-to-plane light transport simulations, leading to major time
and computational demands. Our work replaces multiple planes
with a focal surface and introduces a learned light transport model
that could propagate a light field from a source plane to the focal
surface in a single inference. Our model leverages spatially adaptive
convolution to achieve depth-varying propagation demanded by
targeted focal surfaces. The proposed model reduces the hologram
optimization process up to 1.5x, which contributes to hologram
dataset generation and the training of future learned CGH models.
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1 INTRODUCTION

Computer-Generated Holography (CGH) is a family of algorith-
mic methods used to generate holographic interference patterns.
Identifying these interference patterns using learned [Shi et al.
2022] and optimization [Kavakl et al. 2023a] CGH methods require
conventional simulations of light propagation from plane-to-plane
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Shen and Wang 2006]. Recently,
learned proxy methods [Choi et al.
2021; Kavakl et al. 2022] have been
proposed to replace conventional light
propagation methods [Matsushima
and Shimobaba 2009; Shen and Wang
2006]. As these learned proxy meth-
ods for light propagation are trained
using camera-in-the-loop strategies,
they are able to capture imperfections
of optical hardware, closing the gap
between theoretical simulations and
actual hardware. Either learned or con-
ventional, simulating light propaga-
tion among multiple planes in a 3D vol-
ume is computationally demanding, as
a 3D volume is represented with mul-
tiple planes and each plane requires a
separate calculation of light propaga-
tion to reconstruct the target image.

Our work introduces a learned fo-
cal surface light propagation model
that could help free light simulations
from plane dependence. Specifically,
our model can propagate a phase-only hologram represented with
a plane to a targeted focal surface, see Fig. 1. In our model, we
extract Spatially Varying (SV) depth features of a focal surface
by learning a set of SV kernels. In addition, our model combines
these SV learned kernels with Spatially Invariant (SI) kernels using
a Spatially Adaptive Convolution (SAC). Thus, effectively captur-
ing SV and SI features of light propagation over a focal surface. Our
work makes the following contributions:

Focal Surface Light Transport

47 ms

Speed

sing]e/s:ep ii

Figure 1: Conventional
Light Transport VS. Proposed
Focal Surface Light Trans-

port.(Source image: Tobi 87,
Link: Wikimedia Commons)

e Learned focal surface light transport model. By uniquely
leveraging SAC for CGH, we introduce a new learned light trans-
port model. Our model identifies a mapping from a phase-only
hologram represented over a plane to a targeted focal surface.
Focal surface-based hologram optimization. To evaluate its
practicality, we utilize our model for a 3D phase-only hologram
optimization application. Compared with conventional light prop-
agation based hologram optimization methods [Kavakl et al.
2023a,b], our approach accelerates the optimization process up to
1.5x, leading to speed up benefits in hologram dataset generation
and training future learned CGH models.

Experimental Validation. We evaluate our method in simu-
lation for various propagation distances and validate the result
using a bench-top on-axis holographic display prototype.
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Figure 2: Our proposed learned focal surface light transport model. The process starts with an input hologram H and a focal
surface D to generate spatially varying kernels [Vj], where i = 0,1, 2, 3 indicates the index of scales. Those kernels are utilized in
the Spatially Adaptive Module (SAM) to achieve focal surface light transport. In the SAM, V9, Vé, Vé, V% represent kernels used
at different spatial locations, where 0, j, [, and z indicate specific positions. (Source image: Tobi 87, Link: Wikimedia Commons)

2 FOCAL SURFACE LIGHT TRANSPORT

We introduce the SAC, a modified convolution structure for encod-
ing SV features. Leveraging the SAC, our work enables the learned
focal surface light transport network.

2.1 Spatially Adaptive Convolution
Standard Convolution. Given an input feature I e ROPXW i 4 Con-
volutional Neural Network (CNN), where ¢, fl and w represent the
number of channels, height, and width of the input i (in our case,
¢=3,w = 1080, h= 1920), the discrete convolution based on a SI

kernel W € REXEXkxk j¢ defined as:

I[c,x, y] = Z Wie, ', x, ¢y 11[c,x+x', y+ '], 1)
— Xy
output SI Kernel input

where ¢ and ¢ indicate the number of input and output channels. The
indices satisfy 1 < ¢ < ¢and 1 < ¢ < ¢. The pair (x,y’) belongs
to the set Q(k), which specifies a k X k convolutional window. The
summation operation acts on all input channels, which implies that
each input channel contributes to every output channel. According
to Eq. (1), this operation is characterized by a kernel that is spatially
shared and content-independent. Learning-based light transport
models could use Eq. (1) as a basic operation. However, it is chal-
lenging for this method to project a hologram onto a focal surface.
As each pixel on the hologram plane may correspond to a different
depth on the focal surface, which makes the SI kernel a sub-optimal
choice to capture SV features [Xu et al. 2020; Zheng et al. 2021],
including focusing or out-of-focus effects due to depth variance.
A typical solution is to employ a large number of parameters for
feature encoding, resulting in an increased memory footprint. Al-
ternatively, we could consider using SV convolution [Xu et al. 2020;
Zheng et al. 2021]. The SV kernel V € REXhxwxexkxk incorporates
two new dimensions h, w into SI kernel, where h and w indicate
height, and width of the output feature. However, relying solely
on SV kernels may increase model capacity due to extra parameters,
particularly when h and w are large. These alternative designs all
demand extra network capacity.

Spatially Adaptive Convolution Operation. To address these prob-
lems, we utilize the SAC based on [Xu et al. 2020]. Our method
reduces the network parameters by multiplying the SV kernel with
the standard SI kernel. Initially, the SV kernel V e R1Xhxwxéxkxk
is introduced, the output channel is set to 1 to reduce the number of
parameters. The Spatially Adaptive (SA) kernel A € RE¥hxwxexkxk
is computed by multiplying the W and V, which defined as:

Ale,x,y,c, x",y' 1 =V[Lx,y ', x",y] «W[e, . x",y], (2)
where1 < ¢ <é1<c¢’<é,1<x<handl1<y<w. Eq2en-
hances the output channel capacity in V while maintaining spatially
variant. Both V.and W can be either pre-defined or learned, making
the network content-adaptive. By using A, the SAC is defined as:

I[c,x,y] = Z Ale,x, y, ¢, x, ' 1I[c, x+x", y+ 4] (3)

Cl’xl’yl | —
SA Kernel
SAC retains both the dimensional coherence of the SI kernel in CNN
and is spatially variant at the same time. Note that when W becomes
an all-one tensor, Eq. 3 is equivalent to the SV convolution in CNN.

2.2 Learned Focal Surface Light Transport

We first generate SV kernels to encode depth-varying features of
the focal surface, which are later used in SAC for focal surface light
transport. For the schematic figure of our system, please see Fig. 2.

Spatially Varying Kernel Generation. As shown in Fig. 2, the SV
kernel generation module takes the hologram H € R1*3XhXW and
focal surface D € RIX1XAXW a5 inputs. We adopted the architecture
in RSGUNet [Huang et al. 2018] for SV kernel generation module.
The output of each decoder layer is integrated with feature maps
from different layers in the encoders. Then combined features will
be fed into Spatially Varying Feature (SVF) module to learn a set
of SV kernels [V;], where V; € R"XE"Xka, i =0,1,2,3 refers to
different scale levels, ¢; denotes the input channel, k is the kernel
size, and n = Z—h, X z—vf is the number of kernels. The SVF module
contains convolution layers and average pooling layers. To mitigate
artifacts, we modify the global feature module in [Huang et al. 2018]
to an attention block and apply it at the bottleneck of the U-Net.
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Figure 3: Visual comparison of simulating light transported onto a focal surface (specified in the first row of each case) at 0 mm
and 10 mm propagation distances. The ground truth is obtained via ASM [Matsushima and Shimobaba 2009]. Both focused and
defocused regions indicate poor performance of the U-Net model. (Source image: Matt H. Wade, Link: Wikimedia Commons)

Focal Surface Light Transport. We leverage the generated SV kernels
to build our light transport module based on RSGUNet [Huang et al.
2018]. The module takes the hologram H as input without requiring
depth, as the depth feature of the focal surface is inherently encoded
within the learned SV kernels. To integrate the SV features into
the encoder, we propose a Spatially Adaptive Module (SAM) based
on SAC. As shown in Fig 2, we first replace the SI kernel W to an
all-ones tensor in Eq. (2), which ignores the SI kernels and only
considers the SV kernels to capture the original SV information.
In parallel, we introduce the SI kernels back to Eq. (2) as a learn-
ing parameter and multiply with the SV kernels for better diverse
feature extraction. These features from the two operations will be
concatenated to form the output of SAM. Finally, the global feature
module and the decoder will process the output to generate the
reconstruction at the given focal surface denoted as R.

Loss function. We employ the Ly norm to quantify the discrepancy
between the reconstruction R and the target image R’. Both R
and R’ are focal surface depended image reconstructions. Since R
contains both focus and defocus regions [Kavakl et al. 2023a], we
utilize a binary mask M that highlights only the focus parts of the
image. The loss function for the reconstruction on a single focal
surface Lp is defined as:

Lp=aM|R-R'[| + a1 (1 - M)[R-R'|3, )
where ap and a; represent weights (g = 1 and a7 = 0.5).

2.3 Optimizing Holograms with Focal Surfaces

Recently, learning-based methods have been proposed to solve 3D
hologram generation tasks [Choi et al. 2021; Shi et al. 2022]. How-
ever, the ideal 3D hologram for the holographic display has not yet
been precisely defined [Kim et al. 2024]. Optimization-based holo-
gram generation methods [Kavakl: et al. 2023a,b] could potentially
help identify the ideal 3D hologram and generate hologram datasets
for learning-based approaches. Typically, optimization methods are
based on the multiplane representation, where a full-color holo-
gram is synthesized by making use of the phase patterns of the three
color primaries. Following previous work [Kavakl et al. 2023b],
each single-color phase pattern is obtained by:

3
H, argr{l{ipnz L (|eiHP ® Kp|2 , st) , (1)
=1

where p denotes the index of a color primary, Hp, is the SLM phase,
ﬁp is the optimized SLM phase, K, is the wavelength-dependent
light transport kernel [Matsushima and Shimobaba 2009], R, is the
target image intensity, s is an intensity scaling factor (s = 1 by

default), ® denotes convolution. We substitute the conventional
light transport model with our focal-surface-based model:

He— arg Irgn L (F(H,D),sR). (5)

In this case, the hologram optimization problem is simplified. Our
approach simultaneously optimizes hologram in three color pri-
maries and maintains phase-only at the same time.

3 EVALUATION AND DISCUSSION

We generate the focal surface light transport dataset based on
previous work [Kavakli et al. 2023a,b] at the resolution 1920 X
1080. See Section 1 of the supplementary material for more de-
tails. We use Adam optimizer (f1 = 0.9,f2 = 0.999, dgecay =
0.5 after 50 epochs). The model is trained for 500 epochs, with
an initial Learning Rate (LR) of 2 x 10~%. All experiments are con-
ducted on a single NVIDIA V100 16G GPU.

Evaluation. To assess the image quality, we utilize metrics including
Peak Signal-to-noise Ratio (PSNR), Structural Similarity (SSIM), and
Perceptual Similarity Metric (LPIPS) [Zhang et al. 2018]. First, we
assess the quality of light simulation on a focal surface. As shown
in Tbl. 1, our model outperforms U-Net [Ronneberger et al. 2015]
across all metrics. Fig. 3 shows that our model preserves more
high-frequency content than U-Net, providing finer details and
sharper edges, closer to the ground truth. Second, we utilize our

Table 1: Evaluation of various light transport models on our
dataset. The speed is tested by simulating an all-in-focus,
full-color 3D image with six depth planes. Note that higher
PSNR/SSIM and lower Params/Speed indicate better perfor-
mance, denoted by T and | in the tables.

Methods PSNR (dB) T SSIM T Stage Params | Speed |
0 mm/10 mm 0 mm/10 mm ) (s)
ASM (GT) [Matsushima B B
and Shimobaba 2009] Two 04559
U-Net [Ronneberger | oo (o150 115 0.8015/0.7760 Single 7.7760  0.0565
et al. 2015]
Ours 36.016/34.279 0.9128/0.8470 Single 7.4446 0.0471

model for a 3D phase-only hologram optimization application under
0mm propagation distance. Optimizing holograms with six target
planes using Angular Spectrum Method (ASM) [Matsushima and
Shimobaba 2009] is denoted as ASM 6, while Ours 4 and Ours 6
represent optimizing holograms using our model with four and
six focal surfaces, respectively. All holograms are reconstructed
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Figure 4: Visual comparison on simulated holograms optimized using ASM 6 and Ours 6 under 0 mm propagation distance. All
holograms are reconstructed using ASM for evaluation. (Source image : Jaimie Phillips, Link: Wikimedia Commons)

Table 2: Comparison of image quality for the scene in Fig. 4
among ASM 6, Ours 6, and Ours 4 across different iterations
at 0 mm propagation distance. Note that higher PSNR/SSIM
T and lower LPIPS/Speed | indicate better performance.

ASM 6/Ours 6
/ Ours 4 50 100 200
Speed (s) | [42.580/30.182/20.869 84.626/61.460/39.792 171.49/119.02/77.878
PSNR (dB) T |27.377/27.501/26.088 27.795/27.598/26.905 27.801/27.625/26.928
SSIMT  |0.7100/0.6868/0.6142 0.7193/0.6933/0.6753 0.7195/0.6890/0.6767
LPIPS |  |0.3971/0.4747/0.5431 0.3894/0.4687/0.4707 0.3889/0.4787/0.4639

Iteration

using ASM for performance assessment. As shown in Fig. 4 and
Tbl. 2, Ours 6 achieves comparable results with about 70% of the
optimization time compared to ASM 6. Actual captures of Ours 6
and ASM 6 in Fig. 5 demonstrate the capability of our model for
generating 3D holograms. For more details on the display prototype
and comparisons, see Sections 2 and 3 in supplementary material.

Defocused Defocused

Focused

Focused

Ours 6 ASM 6
Figure 5: Comparing experimental captures of ASM 6
and Ours 6 under 0 mm propagation distances. (Source image
: Jaimie Phillips, Link: Wikimedia Commons)

Computational Complexity Analysis. First, we assess the computa-
tional complexity of simulating a full-color, all-in-focus 3D image
across six depth planes. As shown in Tbl. 1, conventional ASM-
based model [Matsushima and Shimobaba 2009] requires eighteen
forward passes to simulate a full-color, all-in-focus 3D image with
six depth planes. In contrast, our model simulates the three color-
primary images simultaneously onto a focal surface with a single
forward pass, reducing simulation time by 10x and achieving better
image quality with fewer parameters compared to U-Net [Ron-
neberger et al. 2015]. Second, we evaluate hologram optimization.
In Tbl. 2, using four focal surfaces (Ours 4) to approximate six
planes for focus and defocus guidance, speeding up optimization
by up to 2x. Increasing the number of focal surfaces to six (Ours 6)
achieves comparable results with about a 1.5x speedup.

Limitations and Future Works. As shown in Fig. 3, the performance
of our model degrades at a long propagation distance (10 mm)

compared to zero distance (0 mm). See Section 3 in the supplemen-
tary material for more comparisons. Future improvements could
include using a factorized larger kernel for long-distance propaga-
tion. In addition, our model focuses on depth-varying propagation
within a 3D volume, more investigation is needed for depth-varying
propagation of the entire volume using conditional networks.
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