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ABSTRACT

Multi-color holograms rely on simultaneous illumination from multiple light sources. These multi-color holograms
could utilize light sources better than conventional single-color holograms and can improve the dynamic range
of holographic displays. In this letter, we introduce AutoColor, the first learned method for estimating the
optimal light source powers required for illuminating multi-color holograms. For this purpose, we establish
the first multi-color hologram dataset using synthetic images and their depth information. We generate these
synthetic images using a trending pipeline combining generative, large language, and monocular depth estimation
models. Finally, we train our learned model using our dataset and experimentally demonstrate that AutoColor
significantly decreases the number of steps required to optimize multi-color holograms from > 1000 to 70 iteration
steps without compromising image quality.
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1. INTRODUCTION

Computer-Generated Holography (CGH) is an emerging technology for next-generation displays, including virtual
reality headsets, augmented reality glasses,! and 3D displays.? Through CGH, holographic displays promise to
reproduce realistic images by reconstructing accurate light fields®* or perceptually accurate representations.” %
A standard holographic display comprises a phase-only Spatial Light Modulator (SLM) and multiple light sources
that helps generate a full-color image. Typically, the phase-only SLM plays a single-color hologram for each color
channel time-sequentially. Meanwhile, each corresponding light source for each color channel lits a presented
single-color hologram. This way, Human Visual System (HVS) integrates each color from these holograms, and
users can observe full-color Three-Dimensional (3D) scenes from holographic displays.

Recently, Chen et al.” optimized light source powers in single-color holograms using a camera-in-the-loop
approach to accurately represent color and brightness levels. Assuming light sources operate at their peak
intensities, standard single-color holograms are limited in their dynamic range, a set of brightness levels they can
represent. This dynamic range issue becomes apparent as each light source roughly operates one-third of the time
when representing a full-color image. A recent study proposes multi-color holograms® for overcoming this issue.
Their work co-optimizes multi-color holograms with their corresponding powers by each light source. While
their study improves dynamic range and brightness up to x1.8 than single-color holograms, the co-optimization
process requires many iterations (e.g. {1000 steps). Thus, multi-color hologram optimization takes minutes,
remarkably slower than a few seconds of single-color computations.

This letter proposes the first learned method, AutoColor, to estimate the optimal light source powers for multi-
color holograms. AutoColor reduces the multi-color optimization in the previous study® from many minutes to
a couple of ten seconds. Firstly, AutoColor needs a dataset to adequately train a light source powers estimation
network. Today, high-quality hologram datasets 19 exist but are strictly for single-color holograms. The multi-
color hologram dataset is not readily available in the literature. We create the first multi-color hologram dataset
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Figure 1. AutoColor light power estimation network structure. AutoColor learns to estimate powers for each light source
to illuminate multi-color holograms using our multi-color hologram dataset and a permutation-invariant loss tailored for
multi-color holograms.

using synthetic but photo-realistic images and their depth information. Secondly, we develop a Convolutional
Neural Network (CNN) architecture that consists of downsampling and convolution operations to estimate light
source powers from an input image. We train this CNN using our multi-color hologram dataset. Finally, we show
that our CNN significantly accelerates multi-color optimizations. We also experimentally verified our findings in
a holographic display prototype.

2. RELATED WORK

The field of CGH has witnessed significant advancements by incorporating neural networks, addressing the
challenge of balancing speed and image quality. Liang et al.>'? proposed a CGH deep learning network and a
hybrid supervised+unsupervised training approach, which enables the synthesis of high-quality 3D phase-only
holograms at an interactive rate.

Similarly, Choi et al.!' developed a comprehensive CGH framework with a camera-in-the-loop optimization
strategy. This innovative approach has led to the real-time generation of full-color, high-quality holographic im-
ages at 1080p resolution, a breakthrough in holographic imaging. Furthermore, the work by Zhu et al.'? leverages
Fourier basis functions in learning-based CGH, demonstrating impressive performance in model generalization
and quality of reconstructions.

3. METHODOLOGY

The schematic diagram of our learned method, AutoColor, is shown in Fig. 1. To achieve AutoColor, we first
generate a dataset of images with their depths, laser powers, and holograms. We leverage a Large Language
Model (LLM) GPT-4' via its online interface ChatGPT to guide the generation diversity.

We use those LLM-generated prompts to develop a large dataset of images locally using text-to-image gen-
eration models, Stable Diffusion!* (see GitHub:stability-ai/stablediffusion). Using the publicly available weights
(v2-1_512-ema-pruned.ckpt) for the text-to-image generation model and using 12 GB memory, we generate 8865
images with 512 x 512 resolutions. We then upsample these 8865 images to 2048 x 2048 resolutions using a
Generative Adversarial Network (GAN) based super-resolution network!® (see GitHub:xinntao/Real-ESRGAN).
The upsampling process runs locally on an RTX 3090, consuming 4.7 GB memory using the publicly avail-
able weights (RealESRGAN x4plus.pth). To estimate the depth information for all the generated images at
2048 x 2048 resolution, we rely on a monocular depth information network'% 17 and their publicly available
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weights (dpt-hybrid-midas-501{0c75.pt), consuming 35 GB memory on an NVIDIA A100 on a cloud GPU clus-
ter. We also downscale 8865 RGBD images with 1024 x 1024 resolutions to reduce time and memory consumption
during the hologram generation step. Locally, we optimize multi-color holograms and their light source powers
using Multicolor optimization pipeline® (see GitHub:complight /multicolor). To efficiently manage our workload,
we found it imperative to employ multiple GPUs, We convert all the RGB images to multi-color holograms at
x 1.8 brightness, 1024 x 1024 resolution, and 8um pixel pitch. We target three depth layers and 500 steps for
each multi-color hologram, with the learning rate starting from 0.025 and decaying to 0.005 (highly aggressive
to coarse learning rates). The multi-color holograms are generated for three target planes, which are on -0.5 cm,
0 c¢m, and 0.5 cm with respect to our SLM (hologram plane). Our entire dataset generation consumes about ten
days of computation using multiple GPUs.

Conventional single-color holograms rely on a field-sequential color method and use one single monochromatic
light source at a time. HVS fuses these single-color images into a full-color as these holograms are displayed at
rates well above Critical Flicker Fusion (CFF). Assuming that a holographic display has three monochromatic
light sources, each of them is optimized by solving the following equation,
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where p denotes the index of a color primary, u, is the SLM phase, i, is the optimized single-color hologram, A,
is the wavelength-dependent light transport kernel,'® ' I, is the target image intensity, * denotes the convolution
operation, and £ denotes any valid loss function that measures the difference between the reconstruction and
target. On the other hand, multi-color holograms use multiple monochromatic light sources simultaneously.
Assuming the total number of subframes to T' = 3 like in the conventional single-color holograms, multi-color
hologram generation could be formulated as
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where [(; ) represents the light source intensity for the p-th primary at the {-th subframe, A, denotes the
wavelength of the active primary, A, ... denotes the wavelength of the anchor primary, for which the nominal
value of the SLM phase is calibrated against (e.g. A, ... = 515 nm in our hardware prototype), and s determines
how bright a final image should be. For this study, we choose s = x 1.8, whereas single-color hologram has lower
brightness values with s = x1.0. Specifically, a multi-color hologram optimization seeks the optimal light source
intensity, I (a 3 x 3 matrix for light sources and 3 subframes). Values in | are always normalized between
zero (complete switching) and one (the peak brightness level of a monochromatic light source). If s > 1, I’s
rows representing subframes will sum up to a value > 1 to match the demand of s (code implementation at
GitHub:complight /multicolor). For single-color holograms, [ is a preset value that corresponds to an identity
matrix where only one monochromatic light source operates at each subframe. Certainly, it does not meet the
demand of s > 1 effectively as the {’s rows sum up to one and often yields image degradation as described in.®
In this work, we estimate [ matrix to provide a faster convergence rate in multi-color hologram optimizations.
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Leveraging the dataset and the described multi-color optimizations, we develop AutoColor, a light source
power estimation CNN using PyTorch?? and Odak,?! where we estimate various [ from input images. AutoColor
includes downsampling blocks followed by a final convolutional layer, as shown in Fig. 1. Each downsampling
block has a cascade of 2D convolution layers with a kernel size of three and a channel size of twenty-four. Each
convolutional layer in a downsampling block is followed by batch normalization and nonlinear activation function.
The last layer of each block is a downsampling operation. Our CNN contains three downsampling blocks, starting
from original image resolution to downsampling to 100 x 100, 10 x 10, and 3 x 3 in stages. Using an RTX 2080 Ti,
we train our CNN for 40 epochs, starting with a learning rate of 0.002, and declining to 0.0005. Our training with
an Adam solver includes all the images and optimized laser powers of our multi-color holograms from our dataset.
The ground truth laser powers of the images are generated from.® We include regularization terms for various
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considerations. (1) The rows of [ provide light source power for individual frames. Their ordering, however, shall
not alter the reconstructed imagery. Therefore, the predicted laser light source power is regularized for order
invariance. (2) The estimated values shall be bounded with a physically plausible range [0, 1]. The regularization
loss term is constructed as follows,

L= argmﬁl ™ lest = loptlly + > lest < O+ Y lest > 1—1]. (3)
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Here, Linyariant @0d Lpormaiize are loss functions to encourage frame-invariance and bounding to [0,1]. Mean-
while, k represents frame permutations (m for each of them), l.s; represents light source power estimation, and
laserIntensity,,: represents the corresponding optimized power from our dataset. Note that the way we choose
the minimum loss among permutations is a vital component of our training, it is similar to permutation-invariant
loss functions in speech separation literature.?? After the training converges, we use the estimated light source
powers from the CNN and optimize multi-color holograms using.® We observe that the paradigm significantly
improved computational efficiency by reducing the optimization to 70 steps, compared with the 1000 steps from
prior work.®

4. EVALUATION

As a quantitative evalutation, we developed a holographic display hardware prototype following.® Our prototype
uses a LASOS MCS4 multi-wavelength laser (473, 515, and 639 nm) with controlled power levels from two
ESP32-WROOM-32D modules. A pinhole aperture, Thorlabs SM1D12, was placed in front of the fiber to limit
the numerical aperture of the diverging beams. Thorlabs LPVISE100-A linear polarizer placed after the pinhole
aperture allows a polarization state aligned with the SLMs fast axis for light beams. These linearly polarized
beams get modulated with our phase-only SLM, Holoeye Pluto-VIS (1080 x 1920 resolution and 8um pixel
pitch), and arrive at a 4f imaging system composed of two 50 mm focal length achromatic doublet lenses and a
pinhole aperture (Thorlabs AC254-050-A and SM1D12). We capture the image reconstructions with a Ximea
MC245CG-SY camera, located on an X-stage (Thorlabs PT1/M range: 0-25 mm, precision: 0.01 mm). The
prototype is configured as an off-axis imaging system. A linear grating term was applied to phase holograms to
generate images at the half-diffraction order location. We calculate the linearly grated phase hologram, O;,,

e—J(@(zy)+m)  if y = odd
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where ¢ represents the original phase values of Oy, at the x and y pixel locations. Our quantitative evaulation is
summarized in Fig. 2.

5. CONCLUSION

In conclusion, we show that multi-color hologram optimizations could be achieved with significantly fewer steps.
To this aim, we develop a light power estimation network, AutoColor, powered by our first multi-color hologram
generation pipeline and dataset. The findings are further validated with an experimental analysis. We hope
AutoColor to pave the way toward an exciting research frontier for future holograms with wide dynamic ranges
at interactive rates.

In the future, we envision to advance the research on adaptability and energy efficiency. Our CNN is trained
for a fixed multi-color hologram generation routine, where s = x1.8. The architecture may be further improved
such that scale conditions the estimated light source powers. This way, the other s values could be requested
from the CNN. To do so, the multi-color hologram dataset shall be extended to include varied s values. Similarly,
the CNN structure estimates optimal light source powers, instead of the minimal energy consumption. In fact,
power savings could be realized if a gaze tracker is introduced in the system and target colors are chosen following
HVS characteristics in foveal and peripheral regions similar to.23 24
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Figure 2. Photographs showing AutoColor generating x1.8 times brighter images in lesser steps than Multicolor. Exper-
imental results show that AutoColor achieves high-fidelity visuals using only 70 steps, whereas Multicolor requires 1000
steps for similar quality and fails to produce correct color information in 70 steps. Images optimized with 70 steps using
AutoColor provides similar quantitative image metrics (see the inset numbers) compared with the images generated with
1000 steps in Multicolor. AutoColor applies to both 2D images (first and second row) and 3D images (third row). (Source
link: Github:complight/image, 80 ms exposure).
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